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Magnetic resonance (MR)-guided near-infrared spectral tomogra-
phy was developed and used to image adipose and fibroglandular
breast tissue of 11 normal female subjects, recruited under an
institutional review board-approved protocol. Images of hemoglo-
bin, oxygen saturation, water fraction, and subcellular scattering
were reconstructed and show that fibroglandular fractions of both
blood and water are higher than in adipose tissue. Variation in
adipose and fibroglandular tissue composition between individu-
als was not significantly different across the scattered and dense
breast categories. Combined MR and near-infrared tomography
provides fundamental molecular information about these tissue
types with resolution governed by MR T1 images.

hemoglobin � magnetic resonance imaging � water � fat �
oxygen saturation

Near-infrared (NIR) imaging and spectroscopy are emerging
technologies for functional characterization of biological

tissues with specific information about a few important biolog-
ical molecules and structures. Optical measurements of tissue
have significant potential to elucidate the biochemical�structural
constituents of the tissue. IR spectroscopy of tissue can be done
directly or indirectly through Raman spectroscopy, and both
methods have recently shown significant promise as tools to
identify the biochemical components of different breast tissues
(1, 2). These may become excellent intrasurgical or biopsy guides
to determine which tissue should be removed, having a demon-
strated sensitivity and specificity of 88% and 93%, respectively,
for breast cancer microcalcifications in biopsied samples (3).
These techniques measure the basic biochemical constituents
such as collagen, fat, beta-carotene, cholesterol, and water and
the type of calcification deposit present. The caveat of these
methods is that they have short penetration and so are optimally
suited for small tissue volume identification or surface imaging
applications. In contrast, NIR light penetrates much further in
tissue, yet has fewer and broader chemical specific absorption
bands, to identify components of the tissue (4, 5) and has
reported data with extremely high sensitivity and specificity for
cancer based on in vivo studies quantifying hemoglobin and
oxygenation (6). The key spectral features are from water,
hemoglobin, deoxyhemoglobin, lipids, and some potential for
quantifying scattering, which is due to micrometer-sized struc-
tures such as collagen and membrane-bound organelles. Thus,
the microscopic constituents of tissue are identifiable with NIR
imaging, yet with more macroscopic resolution than Raman
spectroscopy and supplying perhaps less chemical-specific infor-
mation. This work reports the previously undescribed imple-
mentation of NIR spectral imaging in a combined magnetic
resonance imaging (MRI)–NIR imaging system to study iden-
tification of these biochemical features in breast adipose and
fibroglandular tissues.

The potential of NIR spectroscopic measurements to deter-
mine tissue physiology and composition in vivo has been studied
since the 1970s (7). Because NIR light can be used to propagate
entirely through �10 cm of tissue, research has focused on
applications in breast imaging (4–6, 8, 9), thereby providing this
biochemical information noninvasively and in an imaging mode.
In clinical breast imaging, diagnostic mammography, ultrasonog-
raphy, and MRI provide structural information and compara-
tively little data on molecular-level changes. When contrast MRI
is used, vascular function is assessed. Supplementing conven-
tional imaging with functional information is an avenue to
improve our understanding of tissues in vivo in both research and
clinical settings. In a recent report, Chance et al. (6) demon-
strated that NIR tomography measurements could be used for
extremely high sensitivity and specificity (96% and 93%, respec-
tively) for tumors as small as 0.8 cm. It is generally thought that
the only major limitation for NIR tomography lies in the area of
low spatial resolution, and if it could be implemented in a
manner that used the strengths of existing clinical modalities
with the benefits of NIR contrast, the modality could become an
accepted tool for clinical breast cancer imaging. This work
demonstrates the type of information that can be obtained with
a hybrid MRI–NIR tomography system that has been optimized
to produce intrinsic molecular concentrations of oxy- and deoxy-
hemoglobin as well as water, along with measures of the sub-
cellular scattering response in normal breast tissue.

Relationships between NIR molecular parameters and demo-
graphic factors such as body mass index (BMI), age, hormonal
status, breast size, and mammographic parenchymal pattern
(i.e., radiographic density) have been investigated in the past (5,
9, 10). These studies have all been based on bulk tissue estimates,
and the incorporation of conventional imaging provides an
opportunity to understand how the spatial distribution of the
parenchymal components within the breast affects disease inci-
dence and progression. For example, mammography has been
used in large epidemiological studies to demonstrate that radio-
graphic density is correlated to the risk of developing cancer
(11). Elucidating the causal link between density and the risk of
cancer remains a challenge because the tools to evaluate breast
composition are limited. In this context, NIR measurements
appear to provide an independent assessment of tissue density
based on scattering indices, hemoglobin, and water content (12).
Hemoglobin concentration is an indicator of tissue vascularity,
which is increased in breast malignancy (13, 14). Further, NIR
absorption differences in tumor and normal breast tissue offer
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one of the highest intrinsic biological contrasts available in
medical imaging, being up to 200% or more, which is equivalent
to the contrast available in x-ray imaging of microcalcifications.
Lower levels of oxygen saturation also have been found in
malignancies, a consequence of tumor cell proliferation com-
bined with compromised perfusion and supply rate mechanisms
(15). MRI-guided NIR spectral tomography offers the possibil-
ity of monitoring these physiological and pathophysiological
changes with high resolution.

Multimodality imaging is increasingly being used to interro-
gate tissue morphology and function simultaneously because of
the inherent benefit of optimized coregistration. Initial demon-
strations of MRI-guided NIR tomography was demonstrated by
Ntziachristos et al. (16) in breast tumor imaging. The present
work explores the integration of MRI (structural) and NIR
tomography (functional) into a single platform for the study of
breast tissue. Significant improvement in the stability and accu-
racy of the reconstruction process can be obtained through MRI
segmented anatomical information as an input to the NIR
parameter estimation problem. However, the way in which the
prior information is used is critical (17–22). Misguided con-
straints can lead to errors that are detrimental to the image
outcome. To date, NIR techniques have been combined with
several high-spatial-resolution, structure-bearing imaging mo-
dalities, including x-ray tomosynthesis (23), ultrasound (24), and
MRI (25, 26), to study human tissues and small animals. Here,
integration of tissue structure is achieved by partitioning the
regularization matrix according to the MRI segmentation and by
using a Laplacian mathematical construct (22, 26). The approach
seamlessly integrates MRI priors into a multispectral NIR
tomography reconstruction and allows molecular imaging of the
different tissue compositions within the breast. The work shows
previously undescribed cross-sectional NIR images of molecular
signatures known to exist in breast tissue where the spatial
boundaries are preserved by MRI. A pilot population of healthy
female volunteers has been imaged and the properties of adipose
and fibroglandular tissues are examined to identify variations in
composition within the breast and between subjects.

Results
Image and Data Acquisition. The tomographic imaging system,
described in detail by Brooksby et al. (27) and shown in Fig. 1,
records measurements of NIR light transmission through a
pendant breast in a planar, anatomically coronal geometry. The
NIR and T1-MRI data acquisition occur in parallel with a total
examination time of �10 min. Full-volume T1-weighted MR
scans are acquired (50 coronal slices, 25-ms repetition time (TR),
6-ms time to echo (TE), 45° flip angle, 2-mm slice thickness),
which provide a map of tissue structure with millimeter spatial
resolution that clearly differentiates adipose from fibroglandular
tissue. Anatomically axial and coronal slices from three repre-
sentative cases are shown in columns 1 and 2 of Fig. 2, respec-
tively. The coronal MR slices show the structure of the breast in
the plane of optical measurement, and the bright spots around
the tissue perimeter represent fiducial markers attached to each
optode. The age and radiographic density of these women were
65, 52, and 43, and scattered, extremely dense, and heteroge-
neously dense, respectively. There are few similarities in the
parenchymal patterns in these three breasts. Grayscale values in
the first (Fig. 2 Top) indicate predominantly adipose composi-
tion intermixed with small amounts of vasculature and fibroglan-
dular tissue. The second case (Fig. 2 Middle) appears to contain
predominantly fibroglandular tissue intermixed with fat, whereas
the third (Fig. 2 Bottom) shows a well differentiated layer of
surrounding adipose tissue.

The MRI-guided NIR reconstruction technique was applied,
and reconstructed images of total hemoglobin concentration
([HbT], �M) are presented in column 4 of Fig. 2. High contrast
is observed with MR-like resolution. In each case, fibroglandular
tissue shows higher [HbT] than adipose tissue. This result is
expected because more vessels are found in fibroglandular breast
than in the fibrous and adipose stroma. Three additional cases
are shown in Fig. 3. Here, reconstructed images of additional
NIR parameters have been included: [HbT], hemoglobin oxygen
saturation (StO2, %), water fraction (H2O, %), scattering am-
plitude (A), and scattering power (SP). Interestingly, the spatial
distributions in the NIR images do not exactly match the
segmented MRI regions in all cases, and some heterogeneity

Fig. 1. The hardware systems used for integration of NIR measurements through breast tissue are shown. (a) Photograph of the portable NIR instrumentation
and control console. (b) Optical fibers extend from the system into the MRI. (c) Open architecture breast array coil houses the optical fiber positioning system
and allows for �8 cm of vertical motion. (d and e) The first (d) and second (e) generation MR-compatible fiber-positioning mechanisms.
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occurs, although the predominant effect is the significant change
in optical properties that results between the adipose and
fibroglandular boundaries.

Summary of Breast Data. Cumulative results are presented in Table
1 for the 11 subjects enrolled in the study. All parameters lie
within, or overlap the ranges of, the bulk average breast prop-
erties measured previously (4, 5, 8–10), which uniformly report
large intersubject variations in the NIR estimations. Based on the
standard deviations observed here, SP shows the highest relative
variability between subjects (61% in fibroglandular tissue), and
hemoglobin oxygen saturation shows the lowest (12% in adipose
tissue). Chromophore concentration intersubject variations were
not significantly different between fibroglandular and adipose
tissue (Table 1). Numerical values in Table 1 are plotted
graphically in Fig. 4.

The differences in the optical properties of the two predom-
inant tissue types were analyzed. Table 2 shows that StO2 is the
only parameter not significantly different in adipose versus
fibroglandular tissue in all 11 exams. These trends match several
expectations based on physiology. Specifically, fibroglandular
tissue is known to contain more blood vessels than adipose and
to have a greater blood supply and water content (28). The
connection between physiology and NIR scattering parameters
A and SP is less clear. However, one ex vivo validation of these
findings is provided by Peters et al. (29), who measured the
scattering spectrum of excised breast tissue in the NIR wave-

Fig. 2. Breast images are displayed from MRI and NIR. Anatomically axial
(column 1 from left) and coronal (column 2) T1-weighted MR scans through
three normal breasts. The coronal slices correspond to the plane of NIR
measurement. Fiducial markers attached to each optical fiber are visible at the
tissue perimeter and are projected onto the model surface (as dots in column
3). Coronal slices are used to create 2D meshes (column 3), which accurately
represent the breast structure in the plane of interest, as well as to locate the
measurement positions with millimeter accuracy. Each mesh location (node) is
classified to define either adipose or fibroglandular tissue based on segmen-
tation of the MRI grayscale intensities, and the dimensions are shown in
millimeters, in the middle column of breast meshes. These meshes are used in
the NIR image reconstruction from simultaneously acquired optical data.
Images of the corresponding total hemoglobin concentration ([HbT], �M) are
shown in column 4.

Fig. 3. Breast images are displayed for MRI and NIR. Anatomically axial (column 1 from left) and coronal (column 2) T1-weighted MRI slices through three normal
breasts. Subjects were 69, 43, and 43 years old with scattered (Top), heterogeneously dense (Middle), and heterogeneously dense (Bottom) radiodensities,
respectively. (Columns 3–7) Reconstructed images of chromophores and scatter parameters from simultaneously acquired NIR measurements (left to right) are
as follows: total hemoglobin concentration ([HbT], �M), hemoglobin oxygen saturation (StO2, %), water fraction (H2O, %), scattering amplitude (A), and SP. The
spatial dimensions are similar to Fig. 2, with all breasts being �8–10 cm in diameter.

Table 1. Average values, SDs, and total ranges for total
hemoglobin concentration, hemoglobin oxygen saturation,
water fraction, scattering amplitude, and scattering power
of adipose and fibroglandular tissue

Property

Adipose tissue Glandular tissue

Mean � SD
Total
range Mean � SD

Total
range

HbT concentration,
�M

17.1 � 3.2 11.7–22.9 22.4 � 7.3 9.8–35.6

StO2, % 70.7 � 8.6 51.8–77.4 69.7 � 10.4 38.8–80.2
Water fraction, % 46.8 � 18.5 23.0–78.5 60.3 � 23.6 17.5–93.5
A 1.34 � 0.54 0.86–2.77 0.94 � 0.38 0.32–1.79
SP 0.56 � 0.32 0.00–0.94 0.79 � 0.48 0.00–1.36
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length range and observed a higher SP in fibroglandular com-
ponents. It is likely that scattering amplitude and power are
surrogate measures of particle density and size, respectively (30,
31), but experimental confirmation is an area of active research.

Discussion
The segmented MRI in the NIR imaging plane provides esti-
mates of the percentage of adipose tissue by area, which was used
to guide data analysis and ranged from 49% to 86%, with an
average of 70% in the 11 subjects evaluated. We observed a
correlation between age and percent adipose tissue (r � 0.69,
P � 0.02), and a paired t test confirmed that women with
scattered radiographic density had a higher adipose content than
those with heterogeneously dense, or extremely dense, breast
classifications (r � 0.30, P � 0.001). In previous work, adipose
fraction was seen as a correlate to body mass index, which likely
represents the fact that higher body mass correlates with increase
fat content in most women (9). Results from stand-alone NIR
imaging systems, which probe the entire breast, have produced

correlations with age, radiographic density, and body mass index
(9, 10, 32) that could reflect changes in the volume fraction of
adipose and fibroglandular tissues, rather than changes in their
individual compositions. Pifferi et al. (32) noted significant
variation in the scattering parameters existed both between
breasts and even spatially within the breast tissue of an individ-
ual. It is likely that MRI-guided NIR tomography will elucidate
the origin of this heterogeneity, because the spatial variation in
the adipose and fibroglandular tissues can be dissected from the
MRI images. Correlation coefficients and associated P values
were calculated for relationships between age, percent adipose
tissue, and the NIR parameters. No correlation was observed
between subject age and any of these tissue characteristics,
supporting the assumption that the intrinsic characteristics of fat,
for example, do not change with age regardless of findings from
previous studies. Percent adipose tissue did correlate with
adipose oxygen saturation (r � 0.66, P � 0.027), although it is not
immediately obvious why these two parameters should be re-
lated. In addition to age, the relative abundance of adipose and
fibroglandular tissue is known to depend on the subject’s weight,
race, and behavioral factors.

Relationships between NIR parameters derived from the two
tissue types also were studied. The only significant connection
appears between water and oxygen saturation for fibroglandular
tissue (r � 0.70, P � 0.015). We assessed the relationship
between radiographic density and NIR properties for adipose
and fibroglandular tissue as well. Table 2 showed that none of the
NIR parameters for fat were significantly different between
breasts with different radiodensity classifications. Similarly, most
of the fibroglandular tissue parameters did not differ, except
hemoglobin, which did correlate with increasing density for this
tissue type. It is currently unknown whether the composition of
fibroglandular tissue is truly different in breasts scored in these
different density categories. It could be that the vascular com-
partment within the fibroglandular zone is greater in the denser
breast. Another explanation for the difference observed here
may be found in Fig. 2. It is clear that the parenchyma patterns
for women with different densities can vary, and it is well known
that during menopause, with the cessation of ovarian hormonal
function, breast lobules in glandular tissue atrophy; hence, the
relative adipose and fibrous stromal volumes may increase. It is
also possible that the resolution of the MRI–NIR image seg-
mentation is too coarse to capture accurately parenchymal
distributions for image reconstruction, especially in scattered
densities. The size of associated fibroglandular regions may be
overestimated, leading to an underestimation of the localized
absorption contrast due to hemoglobin by means of an averaging
effect with the adjacent misclassified fat that actually exists.

The study presented here demonstrates the capability of
MR-guided NIR imaging. The technique provides high-
resolution images of both tissue structure through MRI and
tissue function through NIR contrast. The incorporation of
anatomical information indicates that improved NIR image
quality is achieved and will likely increase the potential for
relevant physiological investigation. It appears increasingly
probable that optical techniques will play important clinical
roles when combined with other imaging systems, as recently
demonstrated by Chance et al. (6), demonstrating high sensi-
tivity and specificity values when imaging breast cancer tu-
mors. For example, optical signatures can be specific to
molecular changes in tissue, as recently demonstrated with
Raman spectroscopy (1, 3), and use of vascular permeability
agents (33), lymphatic agents (34), and�or molecular specific
contrast agents (35) in this sort of tomography geometry will
likely lead to useful diagnostic testing for specific disease
processes. Integrating optical imaging with MRI may provide
enhanced information about hemodynamics and metabolism
at minimal additional cost and complexity compared with the

Fig. 4. Box plots of average properties for adipose and fibroglandular
tissues, including scattering parameters of amplitude and power (a), and
hemoglobin concentration [HbT], oxygen saturation (StO2), and water fraction
(b). Bars represent the total range in the values within each tissue type.

Table 2. P values from paired t tests on differences between
NIR-derived properties associated with tissue type with adipose
vs. glandular tissue in scattered vs. dense breasts

Property

Adipose vs.
glandular

Scattered (n � 6) vs.
dense (n � 5)

Mean
diff.

Adipose,
mean diff.

Glandular
mean diff.

[HbT] 0.022* 0.902 0.009*
StO2 0.798 0.166 0.170
Water 0.040* 0.769 0.068
A 0.005* 0.673 0.579
SP 0.045* 0.324 0.892

All numbers are P values. Adipose vs. glandular, n � 11; scattered, n � 6;
dense, n � 5. *, P � 0.05.
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MR system itself. In using this type of a hybrid system, care has
been taken to apply it to two well understood tissue types first,
namely adipose and fibroglandular tissues, which have very
well known differences in vascular volume, fat, and water
composition. Use of the system in more complex and less well
understood tissues, such as different types of tumors, will
require extensive validation with independent methods. It is
not clear at this time whether this system will be successful in
characterizing or detecting small tumors; based on phantom
studies it does appear that it will be more accurate that a
stand-alone NIR tomography system.

Although this study presents an important step in the devel-
opment of a hybrid system for MRI and optical tomography,
further questions clearly remain as to the functionality and utility
of the system. A priority is validation of the chromophore
quantification, and only extensive phantom studies with complex
phantom geometries mimicking the interior complexity of the
breast will suffice for this validation. Initial studies with three-
layer phantoms, in previous papers, indicate that hemoglobin
quantification in broad regions is possible (22, 26, 36, 37). More
complex and highly heterogeneous phantoms should be analyzed
in the future to ensure the accuracy of this type of hybrid system
and to determine what the minimum resolution and ‘‘effective’’
complexity is possible to segment out from the background tissue
for this type of volumetric NIR spectroscopy. In addition, further
validation of the quantification of water is possible by compar-
ison with water quantification in MRI (38). Initial data in this
area are encouraging, yet concerns about the ability to quantify
water concentration with MRI remain and will always have some
level of uncertainty, because of the varying MR spectrum of
bound vs. unbound water.

Materials and Methods
Human Subjects. An MR-guided NIR imaging system was used to
study the breast tissue properties of 11 women with normal
mammography. The Institutional Review Board at the Dart-
mouth Hitchcock Medical Center approved the clinical exami-
nation protocol, and written informed consent was obtained
from all subjects before participation. The average age of the
volunteers was 53 years and ranged from 43 to 69 years. Four of
the women were premenopausal, and seven were postmeno-
pausal, none of whom were taking hormone replacement ther-
apy. Six of the women had scattered radiographic density, four
were heterogeneously dense, and one was extremely dense.
Given the accurate MR coregistration, each NIR property image
location was associated with either adipose or fibroglandular
tissue, and the average properties of each tissue, along with their
standard deviation and total range across the subject pool, were
determined.

Imaging System Design. The NIR imaging system consisted of six
laser diodes (660–850 nm), which were amplitude-modulated at
100 MHz. The bank of laser tubes was mounted on a linear
translation stage that sequentially coupled the activated source
into 16 bifurcated optical fiber bundles. The central seven fibers
delivered the source light, while the remaining fibers collected
transmitted light and were coupled to photomultiplier tube
(PMT) detectors. For each source, measurements of the ampli-
tude and phase shift of the 100-MHz signal were acquired from
15 locations around the breast. As shown in Fig. 1b, the fibers
extended 13 m into a 1.5-T whole-body MRI (GE Medical
Systems), and the two data streams (i.e., NIR and MRI) were
acquired simultaneously. The participant lay on an open archi-
tecture breast array coil (Invivo, Orlando, FL), shown in Fig. 1c,
which also houses the MR-compatible fiber positioning system.
The plane of fibers spanning the circumference of a pendant
breast can be positioned manually from nipple to chest wall if
multiple planes of NIR data are desired. Two fiber-breast

interface prototypes were constructed. The first, pictured in Fig.
1d, allows each of the 16 fibers to move independently in a radial
direction, and tissue contact is enforced with bronze compres-
sion springs. The second, shown in Fig. 1e, maintains a circular
breast circumference and allows more user control. Generally,
we have observed that NIR data quality and image reconstruc-
tion is more effective on circular geometries than on some of the
distended shapes commonly observed with the first design. This
finding was anticipated by Pogue et al. (39), who showed that
geometries that maximize symmetry in the projection angles
between source and detectors often yield the best images.

Image Reconstruction Algorithm. Image reconstruction has been
outlined in detail in previous papers (22, 26), but the salient
features are summarized here. A frequency-domain diffusion
model was used to simulate measured signals for any specified
distribution of absorption and reduced scattering coefficients, �a
and ��s, within an imaged volume given by

���D(r)��(r , �) � ��a(r) �
i�
c ��(r , �) � S(r , �),

[1]

where S(r, �) is an isotropic light source and �(r, �) is the photon
density at position r; c is the speed of light in tissue; � is the
frequency of light modulation; and D � 1�[3(�a � ��s)] is the
diffusion coefficient. Customized software tools were used to
automatically create meshes in which each location corre-
sponded to either adipose or fibroglandular tissue as illustrated
in Fig. 2.

Having obtained the measurements at the periphery of the
breast, image reconstruction was carried out by repeated solu-
tion of Eq. 1 to estimate the chromophore concentrations and
scattering parameters. The inversion process minimized the
least-squares functional

�2 � �
j�1

Mn

(�j
m � �j

c)2 � � �
j�1

Mn

L(�j � �o, j)2, [2]

where Mn is the total number of measurements at all wave-
lengths (240 	 6), and �j

m and �j
c are, respectively, the

measured and calculated f luence at the boundary for each
measurement point j. � is the regularizing factor for the spatial
prior, and L is a matrix generated from MRI-derived spatial
data, acting on the solution �. L links all of the locations in a
particular type tissue (fibroglandular or fatty) and respects the
MR-defined internal boundaries by applying a second differ-
ential, Laplacian-shaped operator to each region separately
(26). The effect is similar to that of total variation minimiza-
tion (40) because it allows sharp boundary transitions to exist
but provides the f lexibility to encode these boundaries from
MRI information and has the effect of smoothing continuous
regions. Spectral relationships for absorption from Beer’s law
and scattering based on Mie theory were incorporated into the
reconstruction directly (41). Beer’s law states that �a(�) �
¥i�0

n [�(�)]ci, where �(�) is the molar absorption spectra of the
absorbing tissue chromophores each having concentration ci.
Similarly, a power law ��s(�) � A��SP describes the relationship
between the reduced scattering coefficient, A, and SP (42).
The minimization of Eq. 2 is accomplished with a Newton–
Raphson iterative method by using a modified Levenberg–
Marquardt approach to regularization, and the final matrix
equation that is solved is (21)


J̃TJ̃ � �LTL)�� � J̃T��. [3]
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� is set to 10 times the maximum value of the diagonal of J̃TJ̃. This
value was determined in previous studies (26) and appears
optimal regardless of the complexity of the regional distribution
of the imaged volume encoded in L.

Statistical Analysis of Data. Statistical analysis of the data was
completed with a standard paired t test on differences between

the NIR-derived properties associated with the two tissue
types adipose and fibroglandular, to examine whether there
was a difference in composition between scattered and dense
breasts.

This work was supported by National Institutes of Health Grants
R01CA69544 and P01CA80139.
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